

Adaptive analogy in Word-and-Paradigm morphology: the case of Seri verbs

Helen Sims-Williams,¹ Jérémy Pasquereau^{2,3} & Matthew Baerman²

¹ Centre for Language Evolution, University of Edinburgh ² Surrey Morphology Group, University of Surrey, ³ University of Poitiers

Funded by the Arts & Humanities Research Council under grant AH/P002471/1 ('Seri verbs'), and the European Research Council ('The evolution of linguistic complexity') under grant 681942. Their support is gratefully acknowledged. Thanks to all our Seri consultants, especially: Deborah Perales, Gabriel Hoeffer, Teresa Hoeffer, Karelia Perales, Genoveva Herrera, and Anamaria Morales.

The language

• Seri is a language isolate spoken on the coast of Sonora (Mexico) in two villages: El Desemboque/Haxöl lihom and Punta Chueca/Socaaix, by approximately 900 people.

The problem

- Seri verbs have suffixal marking of subject number (singular~plural) and event number (neutral~multiple).
- Considerable allomorphy, alongside paradigmatically disjunctive distribution of allomorphs:

'hurry'	SG	PL		
NEUT	itanamj	itanaml- <mark>coj</mark>		
MULT	itanaml- <mark>c</mark>	itanaml-cam		

'roll'	SG	PL
NEUT	tmaasij	tmaasil- <mark>c</mark>
MULT	tmaasil- im	tmaasil- <mark>coj</mark>

3

4

The problem

- Seri verbs have suffixal marking of subject number (singular~plural) and event number (neutral~multiple).
- Considerable allomorphy, alongside paradigmatically disjunctive distribution of allomorphs:

'hurry'	SG	PL	'roll'	SG	PL
NEUT	itanamj	itanaml- <mark>coj</mark>	NEUT	tmaasij	tmaasil- <mark>c</mark>
MULT	itanaml- <mark>c</mark>	itanaml-cam	MULT	tmaasil- im	tmaasil- <mark>coj</mark>

• We can make sense of this distribution if we view it as a plurality cline: e.g. –*coj* is always more plural than –*c*.

less plural>more plural						
SG MULT	PL NEUT	PL MULT				
itanaml- <mark>c</mark>	itanaml- <mark>coj</mark>	itanaml-cam	'hurry'			
tmaasil-im	tmaasil- <mark>c</mark>	tmaasil- <mark>coj</mark>	'roll'			
	sg MULT itanaml- <mark>c</mark> tmaasil-im	SG MULT PL NEUT itanaml-c itanaml-coj tmaasil-im tmaasil-c	SG MULT PL NEUT PL MULT itanaml-c itanaml-coj itanaml-cam tmaasil-im tmaasil-c tmaasil-coj			

The problem

• Schematically, the distribution looks something like this: any suffix can appear anywhere in the paradigm, but each one is predictably 'right' vs 'left' with respect to any other suffix:

SG NEUT	SG MULT	PL NEUT	PL MULT	
а	b	w	х	lexeme 1
b	w	х	z	lexeme 2

- That means there are systematic relationships between forms in the paradigm, but these are not tied to specific morphosyntactic values.
- This is clearly a problem for a morphemic conception of morphology but it is also a problem for possible alternatives. E.g. Word-and-Paradigm depends on analogical proportions, but:

Proposal

• We implement a version of analogical cell-filling that accesses the cells as relative positions on a scale, rather than sets of morphosyntactic features.

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (O)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С	g	h
bounce (185)	r	u	х	Z
cut (111)	m	n	w	x
go to bed (37)	С	h	w	Z

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С		h
bounce (185)	r	u	х	Z
cut (111)	m	n	w	Х
go to bed (37)	С	h	w	z

• A random form is deleted from a table of inflectional paradigms.

Simulation experiments

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (O)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С		h
bounce (185)	r	u	х	Z
cut (111)	m	n	w	x
go to bed (37)	С	h	w	Z

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С	w	h
bounce (185)	r	u	х	Z
cut (111)	m	n	w	х
go to bed (37)	С	h	w	z

• A random form is deleted from a table of inflectional paradigms.

- The program tries to predict the form back, using one of three methods:
 - 1. Baseline method: copy the form used by another verb

11

Simulation experiments

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С	С	h
bounce (185)	r	u	Х	Z
cut (111)	m	n	w	x
go to bed (37)	С	h	W	Z

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:
 - 1. Baseline method: copy the form used by another verb
 - 2. Set-theoretic analogy: construct and solve a set-theoretic analogy

MULT SG		NEUT SG		MULT PL		NEUT PL
h	is to	с	as	h	is to	с

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (O)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	h	i	k
bent (333)	b	С	h	h
bounce (185)	r	u	Х	Z
cut (111)	m	n	w	х
go to bed (37)	С	h	w	z

• A random form is deleted from a table of inflectional paradigms.

- The program tries to predict the form back, using one of three methods:
 - 1. Baseline method: copy the form used by another verb
 - 2. Set-theoretic analogy: construct and solve a set-theoretic analogy
 - **3. Numeric analogy**: construct and solve an analogy using numeric features.

0	is to	1	96	1	ic to	2
С	IS LO	h	us	С	IS LO	h

13

14

Simulation experiments

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (O)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	n	W	g
bent (333)	r	С	а	x
bounce (185)	r	S	Х	z
cut (111)	а	n	w	g
go to bed (37)	а	b	х	у

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:
 - 1. Baseline method: copy the form used by another verb
 - 2. Set-theoretic analogy: construct and solve a set-theoretic analogy
 - **3. Numeric analogy**: construct and solve an analogy using numeric features.
- This is repeated many times, cumulatively altering the system and potentially creating violations of the scale

• We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	mult sg (1)	NEUT PL (2)	MULT PL (3)
lift (148)	b	С	W	g
bent (333)	а	С	а	х
bounce (185)	а	С	Х	Z
cut (111)	а	С	w	g
go to bed (37)	а	С	х	y

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:
 - 1. Baseline method: copy the form used by another verb
 - 2. Set-theoretic analogy: construct and solve a set-theoretic analogy
 - **3. Numeric analogy**: construct and solve an analogy using numeric features.
- This is repeated many times, cumulatively altering the system and potentially creating violations of the scale and/or affecting cell predictability.

Simulation experiments

	neut sg (0)	mult sg (1)	neut pl (2)	MULT PL (3)
arrive	S	с	k	х
be located	а	q	w	v
cover	g	s	k	r
curved	с	d	у	x
do carefully	S	с	k	x

• We built in type frequency effects: the program tries to solve the problem by repeating many predictions, and choosing the majority answer. Otherwise many scale violations develop, regardless of the prediction method.

16

- We also built in a constraint against syncretism: if a change would make two cells the same for any given verb, it is blocked.
- This can be understood as a proxy for an antihomophony constraint in interpretation.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	mult pl (3)
arrive	S	S	s	s
be located	а	а	а	а
cover	g	g	g	g
curved	С	С	с	с
do carefully	k	k	k	k

17

MULT

PL (3)

z

Ζ

Ζ

z

Ζ

NEUT

у

у

У

У

У

- Scale violations initially increase, but go back to zero.
- This is achieved by generalizing a single marker for each cell, reducing entropy to zero.

• Entropy reduces significantly, but then remains stable.

19

