

Adaptive analogy in Word-and-Paradigm morphology: the case of Seri verbs

Helen Sims-Williams, ${ }^{1}$ Jérémy Pasquereau ${ }^{2,3}$ \& Matthew Baerman ${ }^{2}$
${ }^{1}$ Centre for Language Evolution, University of Edinburgh ${ }^{2}$ Surrey Morphology Group, University of Surrey, ${ }^{3}$ University of Poitiers

Funded by the Arts \& Humanities Research Council under grant AH/P002471/1 ('Seri verbs'), and the European Research Council ('The evolution of linguistic complexity') under grant 681942. Their support is gratefully acknowledged. Thanks to all our Seri consultants, especially: Deborah Perales, Gabriel Hoeffer, Teresa Hoeffer, Karelia Perales, Genoveva Herrera, and Anamaria Morales.

The language

- Seri is a language isolate spoken on the coast of Sonora (Mexico) in two villages: El Desemboque/Haxöl lihom and Punta Chueca/Socaaix, by approximately 900 people.

The problem

- Seri verbs have suffixal marking of subject number (singular~plural) and event number (neutral~multiple).
- Considerable allomorphy, alongside paradigmatically disjunctive distribution of allomorphs:

'hurry'	SG	PL
NEUT	itanamj	itanaml-coj
MULT	itanaml-c	itanaml-cam

'roll'	SG	PL
NEUT	tmaasij	tmaasil-c
MULT	tmaasil-im	tmaasil-coj

The problem

- Seri verbs have suffixal marking of subject number (singular~plural) and event number (neutral~multiple).
- Considerable allomorphy, alongside paradigmatically disjunctive distribution of allomorphs:

'hurry'	SG	PL
NEUT	itanamj	itanaml-coj
MULT	itanaml-c	itanaml-cam

'roll'	SG	PL
NEUT	tmaasij	tmaasil-c
MULT	tmaasil-im	tmaasil-coj

- We can make sense of this distribution if we view it as a plurality cline: e.g. -coj is always more plural than $-c$.
less plural \longrightarrow more plural

SG NEUT	SG MULT	PL NEUT	PL MULT	
itanamj	itanaml-c	itanaml-coj	itanaml-cam	'hurry'
tmaasij	tmaasil-im	tmaasil-c	tmaasil-coj	'roll'

The problem

- Schematically, the distribution looks something like this: any suffix can appear anywhere in the paradigm, but each one is predictably 'right' vs 'left' with respect to any other suffix:

SG NEUT	SG MULT	PL NEUT	PL MULT	
\mathbf{a}	\mathbf{b}	\mathbf{w}	\mathbf{x}	lexeme 1
\mathbf{b}	\mathbf{w}	\mathbf{x}	\mathbf{z}	lexeme 2

- That means there are systematic relationships between forms in the paradigm, but these are not tied to specific morphosyntactic values.
- This is clearly a problem for a morphemic conception of morphology - but it is also a problem for possible alternatives. E.g. Word-and-Paradigm depends on analogical proportions, but:

SG NEUT	is to	SG MULT	as	SG MULT	is to	?
b		w		b		w

Proposal

- We implement a version of analogical cell-filling that accesses the cells as relative positions on a scale, rather than sets of morphosyntactic features.

Proposal

- We implement a version of analogical cell-filling that accesses the cells as relative positions on a scale, rather than sets of morphosyntactic features.

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}	\mathbf{g}	\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}		\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

- A random form is deleted from a table of inflectional paradigms.

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}		\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}	\mathbf{w}	\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

1. Baseline method: copy the form used by another verb

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}	\mathbf{c}	\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

1. Baseline method: copy the form used by another verb
2. Set-theoretic analogy: construct and solve a set-theoretic analogy

MULT SG \mathbf{h}	is to		
NEUT SG			
\mathbf{c}		as	MULT PL
:---:			
\mathbf{h}	is to	NEUT PL	
:---:			
\mathbf{c}			

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{h}	\mathbf{i}	\mathbf{k}
bent (333)	\mathbf{b}	\mathbf{c}	\mathbf{h}	\mathbf{h}
bounce (185)	\mathbf{r}	\mathbf{u}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{m}	\mathbf{n}	\mathbf{w}	\mathbf{x}
go to bed (37)	\mathbf{c}	\mathbf{h}	\mathbf{w}	\mathbf{z}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

1. Baseline method: copy the form used by another verb
2. Set-theoretic analogy: construct and solve a set-theoretic analogy
3. Numeric analogy: construct and solve an analogy using numeric features.

0	is to	1		1	is to	2
\mathbf{c}		\mathbf{h}		\mathbf{c}	is	\mathbf{h}

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{n}	\mathbf{w}	\mathbf{g}
bent (333)	\mathbf{r}	\mathbf{c}	\mathbf{a}	\mathbf{x}
bounce (185)	\mathbf{r}	\mathbf{s}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{a}	\mathbf{n}	\mathbf{w}	\mathbf{g}
go to bed (37)	\mathbf{a}	\mathbf{b}	\mathbf{x}	\mathbf{y}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

1. Baseline method: copy the form used by another verb
2. Set-theoretic analogy: construct and solve a set-theoretic analogy
3. Numeric analogy: construct and solve an analogy using numeric features.

- This is repeated many times, cumulatively altering the system and potentially creating violations of the scale

Simulation experiments

- We devised a set of computational simulations to demonstrate the effects of these alternative models of production on a Seri-like morphological system.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
lift (148)	\mathbf{b}	\mathbf{c}	\mathbf{w}	\mathbf{g}
bent (333)	\mathbf{a}	\mathbf{c}	\mathbf{a}	\mathbf{x}
bounce (185)	\mathbf{a}	\mathbf{c}	\mathbf{x}	\mathbf{z}
cut (111)	\mathbf{a}	\mathbf{c}	\mathbf{w}	\mathbf{g}
go to bed (37)	\mathbf{a}	\mathbf{c}	\mathbf{x}	\mathbf{y}

- A random form is deleted from a table of inflectional paradigms.
- The program tries to predict the form back, using one of three methods:

1. Baseline method: copy the form used by another verb
2. Set-theoretic analogy: construct and solve a set-theoretic analogy
3. Numeric analogy: construct and solve an analogy using numeric features.

- This is repeated many times, cumulatively altering the system and potentially creating violations of the scale and/or affecting cell predictability.

Simulation experiments

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
arrive	s	\boldsymbol{c}	\mathbf{k}	\mathbf{x}
be located	\mathbf{a}	\mathbf{q}	\mathbf{w}	\mathbf{v}
cover	\mathbf{g}	\boldsymbol{s}	\boldsymbol{k}	\mathbf{r}
curved	\mathbf{c}	\mathbf{d}	\boldsymbol{y}	\boldsymbol{x}
do carefully	s	\mathbf{c}	\mathbf{k}	\mathbf{x}

- We built in type frequency effects: the program tries to solve the problem by repeating many predictions, and choosing the majority answer. Otherwise many scale violations develop, regardless of the prediction method.

Simulation experiments

- We also built in a constraint against syncretism: if a change would make two cells the same for any given verb, it is blocked.
- This can be understood as a proxy for an antihomophony constraint in interpretation.

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
arrive	s	s	s	s
be located	\mathbf{a}	\mathbf{a}	\mathbf{a}	\mathbf{a}
cover	\mathbf{g}	\mathbf{g}	\mathbf{g}	\mathbf{g}
curved	\mathbf{c}	\mathbf{c}	\mathbf{c}	\mathbf{c}
do carefully	\mathbf{k}	\mathbf{k}	\mathbf{k}	\mathbf{k}

Results: baseline method

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
arrive	\mathbf{a}	\mathbf{b}	\mathbf{y}	\mathbf{z}
be located	\mathbf{a}	\mathbf{b}	\mathbf{y}	\mathbf{z}
cover	\mathbf{a}	\mathbf{b}	\mathbf{y}	\mathbf{z}
curved	\mathbf{a}	\mathbf{b}	\mathbf{y}	\mathbf{z}
do carefully	\mathbf{a}	\mathbf{b}	\mathbf{y}	\mathbf{z}

- Scale violations initially increase, but go back to zero.
- This is achieved by generalizing a single marker for each cell, reducing entropy to zero.

Results: set-theoretic analogy

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
arrive	\mathbf{c}	\mathbf{w}	\mathbf{v}	\mathbf{y}
be located	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{u}
cover	\mathbf{b}	\mathbf{c}	\mathbf{u}	\mathbf{v}
curved	\mathbf{c}	\mathbf{u}	\mathbf{v}	\mathbf{x}
do carefully	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{u}

- Does better on scale violations than the baseline method, but not perfect.
- Entropy reduces significantly, but then remains stable.

Results: numeric analogy

	NEUT SG (0)	MULT SG (1)	NEUT PL (2)	MULT PL (3)
arrive	\mathbf{q}	\mathbf{u}	\mathbf{w}	\mathbf{x}
be located	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
cover	\mathbf{d}	\mathbf{e}	\mathbf{f}	\mathbf{i}
curved	\mathbf{e}	\mathbf{f}	\mathbf{i}	\mathbf{l}
do carefully	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}

- Performs best on scale violations.
- Entropy reduces a bit, but is stable at a comparatively high level.

Conclusions

- Numeric analogy performs best at maintaining a Seri-like system: it preserves the implicational hierarchy of forms and the highest degree of allomorphy.
- Evidence for purely relational features
- The Seri system can be productively extended: speakers will produce ad-hoc forms for idiosyncratic 'extra-plural' and 'extra singular' meanings, and vice versa. This can be modelled using numeric analogical proportions.

